If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-5600=0
a = 1; b = 6; c = -5600;
Δ = b2-4ac
Δ = 62-4·1·(-5600)
Δ = 22436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22436}=\sqrt{4*5609}=\sqrt{4}*\sqrt{5609}=2\sqrt{5609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5609}}{2*1}=\frac{-6-2\sqrt{5609}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5609}}{2*1}=\frac{-6+2\sqrt{5609}}{2} $
| 2m | | -12=67+18-9y | | 15m=(-5m)= | | 3x=-3x1 | | 6(k+1=2k+7 | | 6n+10=5-n | | 4/15=3x/5 | | –5x+4=–2x+16 | | ((x+4)/5)-((3x-4)/4)=6 | | 2(x+4)-9=15 | | 3v+18=6(v+1) | | 9f=-990 | | 29-x=183 | | -5w–18=-43 | | t-41=52 | | x2+10x=56 | | 4h=96 | | b+15=19 | | j-15=4 | | 39=-7v+5(v+5) | | 19=v+1 | | 8(x14)=54 | | 6(y-3)-4y=2 | | 8=s-1 | | 2x-3+7=4x-8 | | 8x-3=11=6x | | 836000+836000(x)=110000000 | | 2x+6=20-x | | -4x-12=-3x-7 | | C-4=7,c=11 | | 3/12+b=7/4 | | 2(x+10=3x+1 |